FlowPro Software

Full control at your fingertips, seamlessly integrates in all IT infrastructure and catalyst R&D workflows. 24/7 operation
Flowrence® ProductsContact Us

FlowPro enabled workflows

  • Flowrence® Control
  • Flowrence® Data Manager
  • Flowrence® Online and Offline Analytics
  • Integration with other software platforms e.g., i-historian etc.
  • Recipe control software
  • Automated liquid sampling using barcode labeling
  • Tracking catalyst samples and liquid feed properties
  • Integration of analytical data & feedback control
  • Calculation of key performance data like conversion and selectivity

Automated control

The control software serves as an interface to the various control devices in the Flowrence® system with integrated Operator Screen providing a simplified schematic of the Flowrence® where the set points can be directly changed.

The software allows fully unattended 24/7 operation. The PC will not directly control the process conditions, but will only update the set points as required to run the experimental recipe that has been selected. This ensures a reliable and highly accurate control of process parameters. All actual measured values and set points will be stored in a SQL database every second. These stored values can be used to monitor trends within process values. The Flowrence® Control Software provides the possibilities to view these trends in built-in trend plots. The software also provides the possibility to define alarms that can be set for all relevant process values.

Automated operation with run recipes

The experiments can be executed according to a predefined recipe. A recipe is a compilation of steps where each step contains set points, ramp rates (if applicable) and outlet (waste/sampling). The user can describe in each step which reactor will be sampled, in which order and specify waiting times between GC analyses (if applicable). In a recipe, the user can enter an unlimited number of steps with various process conditions. This unique feature allows unattended operation of the unit during a run or an activation procedure.

Automated data import

Results from the online GC are automatically imported into the Flowrence® database and will be available on a real-time basis. When a chromatogram is reprocessed, the new results will be automatically updated into the database. 

The control software will be directly connected to a Microsoft SQL server database on the Control PC where all relevant information of the experiment is automatically stored. This information is stored at a very high detail level (1 sample per second) to allow very accurate trending. This enables the operator of the unit to follow the experiment and to determine whether any adjustments need to be made to the process parameters.

Flowrence® products specifications

Reactor Section

Easy and quick reactor exchange system. Possibility to use quartz reactors at high pressure.

1 block of 4 reactors

HT = High Temperature max. 800°C nominal, limited to 925°C (<0.5°C reactor to reactor deviation)

4 blocks of 4 reactors

HT  or MT = Medium Temperature max. 525°C (<0.5°C block-to-block deviation)

16 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

4 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

Temperature Ranges (°C)

100 – 800°C
up 925°C (Option)

50 – 525°C
100 – 800°C
up 925°C (Option)

50 – 550°C

50 – 550°C

Reactor Types

L= Length
OD= Outer Diameter
ID= Inner Diameter
SS= Stainless Steel (< 550⁰C)
Qz= Quartz (< 925⁰C)

L 300 mm 561 mm
OD 3 mm 6 mm
ID SS 2 / 2.6 mm 2 / 3 / 4 / 5 mm
ID Qz 2 mm 2 / 4 mm
300 mm 561 mm 561 mm
3 mm 3 mm 6 mm
2 / 2.6 mm 2 / 2.6 mm 2 / 3 / 4 / 5 mm
2 mm 2 mm 2 / 4 mm
561 mm
3 mm
2 / 2.6 mm
2 mm
561 mm
3 mm
2 / 2.6 mm
2 mm

Maximum Catalyst Bed Length

(isothermal zone tolerance ± 1°C)
Note: isothermal length is dependent on the temperature range

300 / 3 HT 561 / 6 HT
>120 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
300 / 3 HT 561 / 3 MT 561 / 6 HT
>120 mm @ 450°C >310 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C

Catalyst Volume (mL)

(isothermal zone)

0.2 - 0.6 mL 0.4 - 2.0 mL
0.2 - 0.6 mL 0.4 - 1.0 mL 0.4 - 2.0 mL
0.4 - 1.0 mL
0.4 - 1.0 mL

Pressure Ranges (barg)

2 – 80 barg
0.5 – 180 barg (option)

2 – 100 barg
0.5 – 180 barg

2 – 80 barg
0.5 – 180 barg

2 – 20 barg
2 – 50 barg (option)

Reactor Pressure Control

Advanced control RSD ±0.1 barg at reference conditions (gas phase only and 20 barg). For trickle flow Advanced control RSD ±0.5barg.

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Advanced (±0.1 barg)

Advanced (±0.1 barg)

Gas Feed Lines

(#Gas Feeds)

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Online Analysis

Full integration GC, MS , GC/MS with data visualisation (option)

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Liquid Feed

 Split feeding 8 + 8 reators (option)

Pump-Coriolis dosing system
(ambient, cooled)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Liquid Distribution

Microfluidic Distribution
(4-channel glass-chip)

Microfluidics Distribution
(4x4-channel glass-chip)
(16-channel glass-chip)
Active Liquid Distribution (option)
(with automatic isolation valves)

Active Liquid Distribution
(with automatic isolation valves)

Microfluidic Distribution
(4-channel glass-chip)

Liquid Sampling

(G/L Separation)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Reactors Effluent Handling

(Off-line Analysis Connection)

Full heated circuit up to 180°C with sequential on-line full gas phase sampling (option)

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Offline Analysis

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode (option)

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Waste Handling

Ambient temperature
Heated wax trapping (option)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Safety

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Flowrence® Software

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Microfluidics modular gas distribution

Unrivalled accuracy in gas distribution with patented glass-chips for 4 and 16 reactors, with a guaranteed flow distribution of 0.5% RSD. Quick exchange of glass-chips for different operating conditions. Flexibility to cover a wide range of applications.

TinyPressure glass-chip holder with integrated pressure measurement

Compact modular design for gas and liquid distribution. No high-temperature pressure sensors required. Quick exchange of the microfluidic glass-chips, without the need for time-consuming leak testing.

Tube-in-tube reactor technology with effluent dilution

Unique tube-in-tube design with easy and rapid exchange of the reactor tubes (within minutes!). No need for any connections. Use of inert diluent gas (outside of reactor) to maintain the pressure prevents dead volumes and back flow. Possibility to use quartz reactors at high pressure applications.

Automated liquid sampling system

Programmable, fully automated liquid product sampling robot for 24/7 hands-off operation. Robot equipped with a compact manifold aiming at depressurizing the effluent immediately after each reactor to atmospheric pressure. Eliminates the use of high pressure valves.

Reactor Pressure Control (RPC)

The most accurate and stable pressure regulator for a 16-parallel reactors with just ±0.1bar RSD. The RPC uses microfluidics technology to regulate the pressure of each reactor, maintaining equal distribution of the inlet flow over the 16 reactors.

Auto-calibrating liquid feed distribution, measurement, and control

Distribution of difficult feedstocks e.g., VGO, HVGO, DAO. Liquid distribution 0.2% RSD, making it the most accurate liquid distribution device on the market. Option to selectively isolate each reactor.

Single-Pellet-String-Reactors (SPSR)

No dead-zones, no bed packing & distribution effects. The catalyst packing is straightforward and does not require special procedures. A single string of catalyst particles is loaded in the reactors avoiding maldistribution, eliminating channeling and incomplete wetting.

EasyLoad®

Unique reactor closing system with no connections. Rapid reactor replacement minimizing delays, improving uptime and reliability. Stable evaporation by liquid injection into reactor.

Contact us

We are here to help you

 

 

 

 

 

 

 

 

Avantium Headquarters

+31 (0)20 586 8080

Zekeringstraat 29
1014 BV Amsterdam
The Netherlands

Contact us