Publications

by | Oct 9, 2019

See the power of our advance testing solutions Flowrence® and Batchington in various application areas. We help the leading research institutes developing better and more efficient catalysts with the world’s best high throughput technology.

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012 -
    • Rh/CexZr1−xO2 as NGV Catalyst: Impact of the Preparation of Ceria-Zirconia Support on the Catalytic Performance. Topics in Catalysis volume 66, pages 1013–1019.  https://doi.org/10.1007/s11244-022-01717-z
    • Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science Vol 377, Issue 6602, pp. 204-208. https://doi.org/10.1126/science.abn8289 
    • Combined theoretical and experimental kinetic approach for methane conversion on model supported Pd/La0.7MnO3 NGV catalyst: Sensitivity to inlet gas composition and consequence on the Pd-support interface. Applied Catalysis A: General Volume 641, 118687. https://doi.org/10.1016/j.apcata.2022.118687
    • Impact of Pd Incorporation Method in Stoichiometric and La-Deficient LaxMnO3 on Catalytic Performances in Methane Combustion: A Step Forward the Development of Novel NGV Three-Way Catalysts. Topics in Catalysis volume 66, pages 1037–1044. https://doi.org/10.1007/s11244-022-01756-6
    • Long-term stability of Pt/Ce0.8Me0.2O2-γ/Al2O3 (Me = Gd, Nb, Pr, and Zr) catalysts for steam reforming of methane. International Journal of Hydrogen Energy, Volume 47, Issue 35, Pages 15624-15640. https://doi.org/10.1016/j.ijhydene.2022.03.067
    • Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, Volume 316, 121582. https://doi.org/10.1016/j.apcatb.2022.121582
    • Dual experimental and computational approach to elucidate the effect of Ga on Cu/CeO2–ZrO2 catalyst for CO2 hydrogenation. Journal of CO2 Utilization, Volume 65, 102251. https://doi.org/10.1016/j.jcou.2022.102251
    • Oxidative coupling of methane over strontium-doped neodymium oxide: Parametric evaluations. AIChE, Volume69, Issue4, e17959. https://doi.org/10.1002/aic.17959
    • High-Throughput Experiments and Kinetic Modeling of Oxidative Coupling of Methane, OCM Over  La2O3/CeO2 Catalyst. ADIPEC, SPE-210942-MS. https://doi.org/10.2118/210942-MS
    • Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, Volume 317, 123471. https://doi.org/10.1016/j.fuel.2022.123471
    • PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, Volume 611, Pages 739-751. https://doi.org/10.1016/j.jcis.2021.11.172
    • A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. Journal of Energy Chemistry, Volume 68, Pages 255-266. https://doi.org/10.1016/j.jechem.2021.09.045
    • High-throughput screening and literature data-driven machine learning-assisted investigation of multi-component La2O3-based catalysts for the oxidative coupling of methane. Catalysis Science & Technology, Issue 9. https://doi.org/10.1039/D1CY02206G
    • Rh/ZrO2@C(MIL) catalytic activity and TEM images. CO2 conversion performance and structural systematic evaluation of novel catalysts derived from Zr-MOF metalated with Ru, Rh, Pd or In. Microporous and Mesoporous Materials, Volume 336, 111855. https://doi.org/10.1016/j.micromeso.2022.111855
    • Quickly screen catalysts for hydrotreating of vegetable oil using high-throughput micro-pilot plants. Hydrocarbon Processing, 2022
    • Data quality obtained in refinery catalyst testing. PTQ Catalysis 2022
    • Combined theoretical and experimental kinetic approach for methane conversion on model supported Pd/La0.7MnO3 NGV catalyst: Sensitivity to inlet gas composition and consequence on the Pd-support interface. Applied Catalysis A: General Volume 641, 118687. https://doi.org/10.1016/j.apcata.2022.118687
    • Optimization of the continuous coprecipitation in a microfluidic reactor: Cu-based catalysts for CO2 hydrogenation into methanol. Fuel, Volume 319, 2022, 123689. https://doi.org/10.1016/j.fuel.2022.123689
    • Efficient Promoters and Reaction Paths in the CO2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catal. 3211–3225. https://doi.org/10.1021/acscatal.1c05648
    • Modifying the Hydrogenation Activity of Zeolite Beta for Enhancing the Yield and Selectivity for Fuel-Range Alkanes from Carbon Dioxide. ChemPlusChem, Volume 87, Issue 6, e202200177. https://doi.org/10.1002/cplu.202200177
    • Pure silica-supported transition metal catalysts for the non-oxidative dehydrogenation of ethane: confinement effects on the stability. J. Mater. Chem. A, 9445-9456. https://doi.org/10.1039/D2TA00223J
    • Effect of the particle blending-shaping method and silicon carbide crystal phase for Mn-Na-W/SiO2-SiC catalyst in oxidative coupling of methane. Molecular Catalysis, Volume 527, 112399. https://doi.org/10.1016/j.mcat.2022.112399
    • Screening and design of active metals on dendritic mesoporous Ce0.3Zr0.7O2 for efficient CO2 hydrogenation to methanol. Fuel, Volume 317, 123471. https://doi.org/10.1016/j.fuel.2022.123471
    • Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, Volume 316, 121582. https://doi.org/10.1016/j.apcatb.2022.121582
    • Refinery catalyst selection: Facts and fictions every refiner should know. Hydrocarbon Processing. https://www.nxtbook.com/gulfenergyinfo/gulfpub/hp_202212/index.php#/p/34
    • Dual Experimental and Computational Approach to Elucidate the Effect of Ga on Cu/Ceo2–Zro2 Catalyst for Co2 Hydrogenation. Journal of CO2 Utilization, KAUST. http://dx.doi.org/10.2139/ssrn.4162690
    • Origin of active sites on silica-magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process. Preprint Research Square Platform, KAUST/Utrecht. https://doi.org/10.21203/rs.3.rs-1581970/v1
    • Insight into the Nature of the ZnOx Promoter during Methanol Synthesis. ACS Catal. 6628–6639. https://doi.org/10.1021/acscatal.1c05101
    • Manganese Oxide as a Promoter for Copper Catalysts in CO2and CO Hydrogenation. ChemCatChem, Volume14, Issue 19. https://doi.org/10.1002/cctc.202200451
    • Long-term stability of Pt/Ce8Me0.2O2-γ/Al2O3(Me = Gd, Nb, Pr, and Zr) catalysts for steam reforming of methane. International Journal of Hydrogen Energy, Volume 47, Issue 35, Pages 15624-15640. https://doi.org/10.1016/j.ijhydene.2022.03.067
    • Conversion of Biomass-Derived Methyl Levulinate to Methyl Vinyl Ketone. ACS Sustainable Chem. Eng. 766–775. https://doi.org/10.1021/acssuschemeng.1c05694
    • CO Hydrogenation to Methanol over Cu/MgO Catalysts and Their Synthesis from Amorphous Magnesian Georgeite Precursors. ChemCatChem, Univ. Kiel/Avantium https://doi.org/10.1002/cctc.202200299
    • Multiscale Modeling as a Tool for the Prediction of Catalytic Performances: The Case of n-Heptane Hydroconversion in a Large-Pore Zeolite. American Chemical Society, ACS Catal. 1068–1081. https://doi.org/10.1021/acscatal.1c04707
    • A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. Journal of Energy Chemistry, Volume 68, Pages 255-266. https://doi.org/10.1016/j.jechem.2021.09.045
    • PdCu supported on dendritic mesoporous CexZr1-xO2as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, Volume 611, Pages 739-751. https://doi.org/10.1016/j.jcis.2021.11.172
    • Grafted nickel-promoter catalysts for dry reforming of methane identified through high-throughput experimentation. Applied Catalysis A: General, Volume 629, 1183792021. https://doi.org/10.1016/j.apcata.2021.118379
    • Vilela, T. (2019). Automating Catalyst Evaluation. PTQ 2019 Q4 Issue.
    • Vilela, T., Castro, J., Dathe, H. (2019). Impact of sulphiding agents on ULSD catalyst performance. PTQ 2019 Q2 Catalysis Issue.
    • Ramirez, A.; Dutta Chowdhury, A.; Dokania, A.; Cnudde, P.; Caglayan, M.; Yarulina, I.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; De Wispelaere, K.; et al. Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catal. 2019, 9 (7), 6320-6334. https://doi.org/10.1021/acscatal.9b01466.
    • Bavykina, A.; Yarulina, I.; Al Abdulghani, A. J.; Gevers, L.; Hedhili, M. N.; Miao, X.; Galilea, A. R.; Pustovarenko, A.; Dikhtiarenko, A.; Cadiau, A.; et al. Turning a Methanation Co Catalyst into an In-Co Methanol Producer. ACS Catal. 2019, 9 (8), 6910 – 6918. https://doi.org/10.1021/acscatal.9b01638.
    • Ishikawa, S.; Murayama, T.; Katryniok, B.; Dumeignil, F.; Araque, M.; Heyte, S.; Paul, S.; Yamada, Y.; Iwazaki, M.; Noda, N.; et al. Influence of the Structure of Trigonal Mo-V-M3rd Oxides (M3rd =-, Fe, Cu, W) on Catalytic Performances in Selective Oxidations of Ethane, Acrolein, and Allyl Alcohol. Applied Catalysis A: General 2019, 584, 117151. https://doi.org/10.1016/j.apcata.2019.117151.
    • Wang, J.; Huang, S.; Howard, S.; Muir, B. W.; Wang, H.; Kennedy, D. F.; Ma, X. Elucidating Surface and Bulk Phase Transformation in Fische-Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catal. 2019, 9 (9), 7976-7983. https://doi.org/10.1021/acscatal.9b01104.
    • Li, G.; Jiao, F.; Miao, D.; Wang, Y.; Pan, X.; Yokoi, T.; Meng, X.; Xiao, F.-S.; Parvulescu, A.-N.; Müller, U.; et al. Selective Conversion of Syngas to Propane over ZnCrOx-SSZ-39 OX-ZEO Catalysts. Journal of Energy Chemistry 2019, 36, 141 – 147. https://doi.org/10.1016/j.jechem.2019.07.006.
    • van Zandvoort, I.; van der Waal, J. K.; Ras, E.-J.; de Graaf, R.; Krishna, R. Highlighting Non-Idealities in C2H4/CO2 Mixture Adsorption in 5A Zeolite. Separation and Purification Technology 2019, 227, 115730. https://doi.org/10.1016/j.seppur.2019.115730.
    • Vilela, T.; Castro, J.; Dathe, H. Impact of sulphiding agents on ULSD catalyst performance. PTQ Catalysis 2019, 19-21. http://www.eptq.com/view_article.aspx?intAID=1720.
    • Xie, J.; Paalanen, P. P.; Deelen, T. W. van; Weckhuysen, B. M.; Louwerse, M. J.; Jong, K. P. de. Promoted Cobalt Metal Catalysts Suitable for the Production of Lower Olefins from Natural Gas. Nature Communications 2019, 10 (1), 167https://doi.org/10.1038/s41467-018-08019-7.
    • Ibáñez, J.; Araque-Marin, M.; Paul, S.; Pera-Titus, M. Direct Amination of 1-Octanol with NH3 over Ag-Co/Al2O3: Promoting Effect of the H2 Pressure on the Reaction Rate. Chemical Engineering Journal 2019, 358, 1620 – 1630. https://doi.org/10.1016/j.cej.2018.10.021
    • Weber, J. L.; Krans, N. A.; Hofmann, J. P.; Hensen, E. J. M.; Zecevic, J.; de Jongh, P. E.; de Jong, K. P. Effect of Proximity and Support Material on Deactivation of Bifunctional Catalysts for the Conversion of Synthesis Gas to Olefins and Aromatics. Catalysis Today 2019. https://doi.org/10.1016/j.cattod.2019.02.002.
    • Vilela, T. (2018). Refinery Catalyst Testing: Selecting the best catalyst for a unit demands thorough evaluation of the available options. PTQ 2018 Q2 Issue.
    • Vilela, T. (2018). Evaluating quickly deactivating catalytic systems. PTQ 2018 Q4 Issue.
    • Bavykina, A.; Yarulina, I.; Gevers, L.; Hedhili, M. N.; Miao, X.; Ramirez, A.; Pustovarenko, O.; Dikhtiarenko, A.; Cadiau, A.; Ould-Chikh, S.; et al. Turning a Methanation Catalyst into a Methanol Producer: In-Co Catalysts for the Direct Hydrogenation of CO2 to Methanol. 2018. https://doi.org/10.26434/chemrxiv.7346693.v1.
    • Desai, S. P.; Ye, J.; Zheng, J.; Ferrandon, M. S.; Webber, T. E.; Platero-Prats, A. E.; Duan, J.; Garcia-Holley, P.; Camaioni, D. M.; Chapman, K. W.; et al. Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. J. Am. Chem. Soc. 2018, 140 (45), 15309–15318. https://doi.org/10.1021/jacs.8b08550.
    • van Deelen, T. W.; Nijhuis, J. J.; Krans, N. A.; Zečević, J.; de Jong, K. P. Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in Fischer–Tropsch Catalysts. ACS Catal. 2018, 8 (11), 10581–10589. https://doi.org/10.1021/acscatal.8b03094.
    • Camacho-Bunquin, J.; Ferrandon, M. S.; Sohn, H.; Kropf, A. J.; Yang, C.; Wen, J.; Hackler, R. A.; Liu, C.; Celik, G.; Marshall, C. L.; et al. Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of N-Butane to 1,3-Butadiene. ACS Catal. 2018, 8 (11), 10058–10063. https://doi.org/10.1021/acscatal.8b02794.
    • Ramirez, A.; Gevers, L.; Bavykina, A.; Ould-Chikh, S.; Gascon, J. Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins. ACS Catal. 2018, 8 (10), 9174–9182. https://doi.org/10.1021/acscatal.8b02892.
    • van Zandvoort, I.; van Klink, G. P. M.; de Jong, E.; van der Waal, J. C. Selectivity and Stability of Zeolites [Ca]A and [Ag]A towards Ethylene Adsorption and Desorption from Complex Gas Mixtures. Microporous and Mesoporous Materials 2018, 263, 142–149. https://doi.org/10.1016/j.micromeso.2017.12.004.
    • Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D.; Liu, C.; Ignacio-de Leon, P. A.; Perras, F. A.; Pruski, M.; Stair, P. C.; Delferro, M. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica. J. Am. Chem. Soc. 2018, 140 (11), 3940–3951. https://doi.org/10.1021/jacs.7b11981.
    • Roberts, S. J.; Fletcher, J. V.; Zhou, Y.; Luchters, N. T. J.; Fletcher, J. C. Q. Water-Gas Shift of Reformate Streams over Mono-Metallic PGM Catalysts. International Journal of Hydrogen Energy 2018, 43 (12), 6150–6157. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.01.193.
    • Ras, E.-J. Model Based Catalyst Discovery from an Industrial Perspective. In Abstracts of Papers, 255th ACS National Meeting & Exposition, New Orleans, LA, United States, March 18-22, 2018; American Chemical Society, 2018; p CATL-18.
    • Lama, S. M. G.; Weber, J. L.; Heil, T.; Hofmann, J. P.; Yan, R.; Jong, K. P. de; Oschatz, M. Tandem Promotion of Iron Catalysts by Sodium-Sulfur and Nitrogen-Doped Carbon Layers on Carbon Nanotube Supports for the Fischer-Tropsch to Olefins Synthesis. Applied Catalysis A: General 2018, 568, 213–220. https://doi.org/10.1016/j.apcata.2018.09.016
    • Italiano, C.; Luchters, N. T. J.; Pino, L.; Fletcher, J. V.; Specchia, S.; Fletcher, J. C. Q.; Vita, A. High Specific Surface Area Supports for Highly Active Rh Catalysts: Syngas Production from Methane at High Space Velocity. International Journal of Hydrogen Energy 2018, 43 (26), 11755–11765. https://doi.org/10.1016/j.ijhydene.2018.01.136
    • Chen, Y.; Batalha, N.; Marinova, M.; Impéror-Clerc, M.; Ma, C.; Ersen, O.; Baaziz, W.; Stewart, J. A.; Curulla-Ferré, D.; Khodakov, A. Y.; et al. Ruthenium Silica Nanoreactors with Varied Metal–Wall Distance for Efficient Control of Hydrocarbon Distribution in Fischer–Tropsch Synthesis. Journal of Catalysis 2018, 365, 429–439. https://doi.org/10.1016/j.jcat.2018.06.023
    • Mejía, C. H.; Deelen, T. W. van; Jong, K. P. de. Activity Enhancement of Cobalt Catalysts by Tuning Metal-Support Interactions. Nature Communications 2018, 9 (1), 4459. https://doi.org/10.1038/s41467-018-06903-w
    • Stöwe, K. Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik. In Handbuch Chemische Reaktoren: Grundlagen und Anwendungen der Chemischen Reaktionstechnik; Reschetilowski, W., Ed.; Springer Reference Naturwissenschaften; Springer Berlin Heidelberg: Berlin, Heidelberg, 2018; pp 1–43. https://doi.org/10.1007/978-3-662-56444-8_45-1
    • Weber, J. L.; Dugulan, I.; de Jongh, P. E.; de Jong, K. P. Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem 2018, 10 (5), 1107–1112.https://doi.org/10.1002/cctc.201701667
    • Carvalho, A.; Marinova, M.; Batalha, N.; Marcilio, N. R.; Khodakov, A. Y.; Ordomsky, V. V. Design of Nanocomposites with Cobalt Encapsulated in the Zeolite Micropores for Selective Synthesis of Isoparaffins in Fischer–Tropsch Reaction. Catal. Sci. Technol. 2017, 7 (21), 5019–5027. https://doi.org/10.1039/C7CY01945A.
    • Ordomsky, V. V.; Luo, Y.; Gu, B.; Carvalho, A.; Chernavskii, P. A.; Cheng, K.; Khodakov, A. Y. Soldering of Iron Catalysts for Direct Synthesis of Light Olefins from Syngas under Mild Reaction Conditions. ACS Catal. 2017, 7 (10), 6445–6452. https://doi.org/10.1021/acscatal.7b01307.
    • Munirathinam, R.; Laurenti, D.; Uzio, D.; Pirngruber, G. D. Do Happy Catalyst Supports Work Better? Surface Coating of Silica and Titania Supports with (Poly)Dopamine and Their Application in Hydrotreating. Applied Catalysis A: General 2017, 544, 116–125. https://doi.org/10.1016/j.apcata.2017.07.008.
    • Casavola, M.; Xie, J.; Meeldijk, J. D.; Krans, N. A.; Goryachev, A.; Hofmann, J. P.; Dugulan, A. I.; de Jong, K. P. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion. ACS Catal. 2017, 7 (8), 5121–5128. https://doi.org/10.1021/acscatal.7b00847.
    • ALPHAZAN, T.; Bonduelle, A.; Legens, C.; Raybaud, P.; Coperet, C. Process for the Preparation of a Catalyst Based on Tungsten for Use in Hydrotreatment or in Hydrocracking. US9579642B2, February 28, 2017.
    • Oschatz, M.; Hofmann, J. P.; van Deelen, T. W.; Lamme, W. S.; Krans, N. A.; Hensen, E. J. M.; de Jong, K. P. Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem 2017, 9 (4), 620–628. https://doi.org/10.1002/cctc.201601228.
    • Ordomsky, V. V.; Khodakov, A. Y. Syngas to Chemicals: The Incorporation of Aldehydes into Fischer–Tropsch Synthesis. ChemCatChem 2017, 9 (6), 1040–1046.https://doi.org/10.1002/cctc.201601508.
    • Moonen, R.; Alles, J.; Ras, E.; Harvey, C.; Moulijn, J. A. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor. Chemical Engineering & Technology 2017, 40 (11), 2025–2034. https://doi.org/10.1002/ceat.201700098.
    • Mejía, C. H.; Otter, J. H. den; Weber, J. L.; Jong, K. P. de. Crystalline Niobia with Tailored Porosity as Support for Cobalt Catalysts for the Fischer–Tropsch Synthesis. Applied Catalysis A: General 2017, 548, 143–149. https://doi.org/10.1016/j.apcata.2017.07.016.
    • Harmon, L.; Hallen, R.; Lilga, M.; Heijstra, B.; Palou-Rivera, I.; Handler, R. A Hybrid Catalytic Route to Fuels from Biomass Syngas; LanzaTech, Inc., Skokie, IL (United States), 2017.
    • Carvalho, A. A. B. Investigation of Intrinsic Activity of Cobalt and Iron Based Fischer-Tropsch Catalysts Using Transient Kinetic Methods. 2017.
    • Botes, G. F.; Bromfield, T. C.; Coetzer, R. L. J.; Crous, R.; Gibson, P.; Ferreira, A. C. Development of a Chemical Selective Iron Fischer Tropsch Catalyst. Catalysis Today 2016, 275, 40–48. https://doi.org/10.1016/j.cattod.2015.11.044.
    • Ampelli, C.; Centi, G.; Genovese, C.; Papanikolaou, G.; Pizzi, R.; Perathoner, S.; van Putten, R.-J.; Schouten, K. J. P.; Gluhoi, A. C.; van der Waal, J. C. A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural. Top Catal 2016, 59 (17), 1659–1667. https://doi.org/10.1007/s11244-016-0675-y.
    • Subramanian, V.; Ordomsky, V. V.; Legras, B.; Cheng, K.; Cordier, C.; Chernavskii, P. A.; Khodakov, A. Y. Design of Iron Catalysts Supported on Carbon–Silica Composites with Enhanced Catalytic Performance in High-Temperature Fischer–Tropsch Synthesis. Catal. Sci. Technol. 2016, 6 (13), 4953–4961. https://doi.org/10.1039/C6CY00060F.
    • Delgado, J. A.; Claver, C.; Castillón, S.; Curulla-Ferré, D.; Ordomsky, V. V.; Godard, C. Effect of Polymeric Stabilizers on Fischer–Tropsch Synthesis Catalyzed by Cobalt Nanoparticles Supported on TiO2. Journal of Molecular Catalysis A: Chemical 2016, 417, 43–52. https://doi.org/10.1016/j.molcata.2016.02.029.
    • den Otter, J. H. Niobia-supported Cobalt Catalysts for Fischer-Tropsch Synthesis http://dspace.library.uu.nl/handle/1874/334105.
    • Zhu, H.; Rosenfeld, D. C.; Harb, M.; Anjum, D. H.; Hedhili, M. N.; Ould-Chikh, S.; Basset, J.-M. Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catal. 2016, 6 (5), 2852–2866.https://doi.org/10.1021/acscatal.6b00044.
    • Cheng, K.; Subramanian, V.; Carvalho, A.; Ordomsky, V. V.; Wang, Y.; Khodakov, A. Y. The Role of Carbon Pre-Coating for the Synthesis of Highly Efficient Cobalt Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis 2016, 337, 260–271. https://doi.org/10.1016/j.jcat.2016.02.019.
    • Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.; Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.; Khodakov, A. Y. Nanoreactors: An Efficient Tool To Control the Chain-Length Distribution in Fischer–Tropsch Synthesis. ACS Catal. 2016, 6 (3), 1785–1792. https://doi.org/10.1021/acscatal.5b01596.
    • den Otter, J. H.; Nijveld, S. R.; de Jong, K. P. Synergistic Promotion of Co/SiO2 Fischer–Tropsch Catalysts by Niobia and Platinum. ACS Catal. 2016, 6 (3), 1616–1623. https://doi.org/10.1021/acscatal.5b02418.
    • Laveille, P.; Guillois, K.; Tuel, A.; Petit, C.; Basset, J.-M.; Caps, V. Durable PROX Catalyst Based on Gold Nanoparticles and Hydrophobic Silica. Chem. Commun. 2016, 52 (15), 3179–3182. https://doi.org/10.1039/C5CC09561A.
    • van Putten, R.-J.; van der Waal, J. C.; Harmse, M.; van de Bovenkamp, H. H.; de Jong, E.; Heeres, H. J. A Comparative Study on the Reactivity of Various Ketohexoses to Furanics in Methanol. ChemSusChem 2016, 9 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1827–1834. https://doi.org/10.1002/cssc.201600252.
    • Subramanian, V.; Zholobenko, V. L.; Cheng, K.; Lancelot, C.; Heyte, S.; Thuriot, J.; Paul, S.; Ordomsky, V. V.; Khodakov, A. Y. The Role of Steric Effects and Acidity in the Direct Synthesis of Iso-Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem 2016, 8 (2), 380–389.https://doi.org/10.1002/cctc.201500777.
    • Otter, J. H. den; Yoshida, H.; Ledesma, C.; Chen, D.; Jong, K. P. de. On the Superior Activity and Selectivity of PtCo/Nb2O5 Fischer Tropsch Catalysts. Journal of Catalysis 2016, 340, 270–275. https://doi.org/https://doi.org/10.1016/j.jcat.2016.05.025.
    • Oschatz, M.; Lamme, W. S.; Xie, J.; Dugulan, A. I.; Jong, K. P. de. Ordered Mesoporous Materials as Supports for Stable Iron Catalysts in the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem 2016, 8 (17), 2846–2852. https://doi.org/10.1002/cctc.201600492.
    • Oschatz, M.; Krans, N.; Xie, J.; Jong, K. P. de. Systematic Variation of the Sodium/Sulfur Promoter Content on Carbon-Supported Iron Catalysts for the Fischer–Tropsch to Olefins Reaction. Journal of Energy Chemistry 2016, 25 (6), 985–993. https://doi.org/10.1016/j.jechem.2016.10.011.
    • Oschatz, M.; Deelen, T. W. van; L. Weber, J.; S. Lamme, W.; Wang, G.; Goderis, B.; Verkinderen, O.; I. Dugulan, A.; Jong, K. P. de. Effects of Calcination and Activation Conditions on Ordered Mesoporous Carbon Supported Iron Catalysts for Production of Lower Olefins from Synthesis Gas. Catalysis Science & Technology 2016, 6 (24), 8464–8473. https://doi.org/10.1039/C6CY01251E.
    • Ordomsky, V. V.; Carvalho, A.; Legras, B.; Paul, S.; Virginie, M.; Sushkevich, V. L.; Khodakov, A. Y. Effects of Co-Feeding with Nitrogen-Containing Compounds on the Performance of Supported Cobalt and Iron Catalysts in Fischer–Tropsch Synthesis. Catalysis Today 2016, 275, 84–93. https://doi.org/10.1016/j.cattod.2015.12.015.
    • Murayama, T.; Katryniok, B.; Heyte, S.; Araque, M.; Ishikawa, S.; Dumeignil, F.; Paul, S.; Ueda, W. Role of Crystalline Structure in Allyl Alcohol Selective Oxidation over Mo3VOx Complex Metal Oxide Catalysts. ChemCatChem 2016, 8 (14), 2415–2420. https://doi.org/10.1002/cctc.201600430.
    • Eschemann, T. O.; Oenema, J.; Jong, K. P. de. Effects of Noble Metal Promotion for Co/TiO2 Fischer-Tropsch Catalysts. Catalysis Today 2016, 261, 60–66. https://doi.org/10.1016/j.cattod.2015.06.016.
    • Batista, A. T. F. Innovative Preparations of Heterogeneous Catalysts for the Production of (Bio) Fuels. 2016.

     

    • Pizzi, R.; Van Putten, R.-J.; Brust, H.; Perathoner, S.; Centi, G.; Van der Waal, J. C. High-Throughput Screening of Heterogeneous Catalysts for the Conversion of Furfural to Bio-Based Fuel Components. Catalysts 2015, 5 (4), 2244–2257. https://doi.org/10.3390/catal5042244.
    • Cheng, K.; Ordomsky, V. V.; Legras, B.; Virginie, M.; Paul, S.; Wang, Y.; Khodakov, A. Y. Sodium-Promoted Iron Catalysts Prepared on Different Supports for High Temperature Fischer–Tropsch Synthesis. Applied Catalysis A: General 2015, 502, 204–214. https://doi.org/10.1016/j.apcata.2015.06.010.
    • Eschemann, T. O.; Lamme, W. S.; Manchester, R. L.; Parmentier, T. E.; Cognigni, A.; Rønning, M.; de Jong, K. P. Effect of Support Surface Treatment on the Synthesis, Structure, and Performance of Co/CNT Fischer–Tropsch Catalysts. Journal of Catalysis 2015, 328, 130–138. https://doi.org/10.1016/j.jcat.2014.12.010.
    • Zhu, H.; Laveille, P.; Rosenfeld, D. C.; Hedhili, M. N.; Basset, J.-M. A High-Throughput Reactor System for Optimization of Mo–V–Nb Mixed Oxide Catalyst Composition in Ethane ODH. Catal. Sci. Technol. 2015, 5 (8), 4164–4173.https://doi.org/10.1039/C5CY00488H.
    • Eschemann, T. O.; de Jong, K. P. Deactivation Behavior of Co/TiO2 Catalysts during Fischer–Tropsch Synthesis. ACS Catal. 2015, 5 (6), 3181–3188. https://doi.org/10.1021/acscatal.5b00268.
    • Paul, S.; Heyte, S.; Katryniok, B.; Garcia-Sancho, C.; Maireles-Torres, P.; Dumeignil, F. REALCAT: A New Platform to Bring Catalysis to the Lightspeed. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2015, 70 (3), 455–462. https://doi.org/10.2516/ogst/2014052.
    • Magendie, G.; Guichard, B.; Espinat, D. Effect of Acidity, Hydrogenating Phases and Texture Properties of Catalysts on the Evolution of Asphaltenes Structures during Reside Hydroconversion. Catalysis Today 2015, 258, 304–318. https://doi.org/10.1016/j.cattod.2014.10.023.
    • Cheng, K.; Virginie, M.; Ordomsky, V. V.; Cordier, C.; Chernavskii, P. A.; Ivantsov, M. I.; Paul, S.; Wang, Y.; Khodakov, A. Y. Pore Size Effects in High-Temperature Fischer–Tropsch Synthesis over Supported Iron Catalysts. Journal of Catalysis 2015, 328, 139–150. https://doi.org/10.1016/j.jcat.2014.12.007.
    • Alphazan, T.; Bonduelle-Skrzypczak, A.; Legens, C.; Gay, A.-S.; Boudene, Z.; Girleanu, M.; Ersen, O.; Copéret, C.; Raybaud, P. Highly Active Nonpromoted Hydrotreating Catalysts through the Controlled Growth of a Supported Hexagonal WS2 Phase. ACS Catal. 2014, 4 (12), 4320–4331. https://doi.org/10.1021/cs501311m.
    • Munnik, P.; Krans, N. A.; de Jongh, P. E.; de Jong, K. P. Effects of Drying Conditions on the Synthesis of Co/SiO2 and Co/Al2O3 Fischer–Tropsch Catalysts. ACS Catal. 2014, 4 (9), 3219–3226. https://doi.org/10.1021/cs5006772.
    • Eschemann, T. O.; Bitter, J. H.; de Jong, K. P. Effects of Loading and Synthesis Method of Titania-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Catalysis Today 2014, 228, 89–95. https://doi.org/10.1016/j.cattod.2013.10.041.
    • Munnik, P.; de Jongh, P. E.; de Jong, K. P. Control and Impact of the Nanoscale Distribution of Supported Cobalt Particles Used in Fischer–Tropsch Catalysis. J. Am. Chem. Soc. 2014, 136 (20), 7333–7340. https://doi.org/10.1021/ja500436y.
    • Hagemeyer, A.; Volpe, A. F. Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Bentham Science Publishers, 2014.
    • Realistic Catalyst Testing in High-Throughput Parallel Small- Scale Reactor Systems. In Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Hagemeyer, A., Volpe, A., Eds.; BENTHAM SCIENCE PUBLISHERS, 2014; pp 197–226. https://doi.org/10.2174/9781608058723114010009.
    • den Otter, J. H.; de Jong, K. P. Highly Selective and Active Niobia-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Top Catal 2014, 57 (6), 445–450. https://doi.org/10.1007/s11244-013-0200-5.
    • Zhu, H.; Anjum, D. H.; Wang, Q.; Abou-Hamad, E.; Emsley, L.; Dong, H.; Laveille, P.; Li, L.; Samal, A. K.; Basset, J.-M. Sn Surface-Enriched Pt–Sn Bimetallic Nanoparticles as a Selective and Stable Catalyst for Propane Dehydrogenation. Journal of Catalysis 2014, 320, 52–62. https://doi.org/10.1016/j.jcat.2014.09.013.
    • van der Waal, J. C.; Ras, E.-J.; Lok, C. M.; Moonen, R.; van der Puil, N. Realistic Catalyst Testing in High-Throughput Parallel Small-Scale Reactor Systems. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 197.
    • Stöwe, K.; Hammes, M.; Valtchev, M.; Roth, M.; Maier, W. F. Parallel Fixed Bed Microreactors for High-Throughput Screening with Special Focus on High Corrosion Resistance and New Deacon Catalysts for Chlorine Production. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 118.
    • Ras, E.-J.; Rothenberg, G. Heterogeneous Catalyst Discovery Using 21st Century Tools: A Tutorial. RSC Adv. 2014, 4 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 5963–5974. https://doi.org/10.1039/c3ra45852k.
    • Ras, E.-J.; Gomez-Quero, S. Oxidative Coupling of Methane in Small Scale Parallel Reactors. Top. Catal. 2014, 57 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1392–1399. https://doi.org/10.1007/s11244-014-0310-8.
    • Lok, C. M. The 2014 Murray Raney Award Lecture: Architecture and Preparation of Supported Nickel Catalysts. Top. Catal. 2014, 57 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1318–1324. https://doi.org/10.1007/s11244-014-0298-0.
    • Kleist, W.; Grunwaldt, J.-D. 9.5: High Output Catalyst Development in Heterogeneous Gas Phase Catalysis. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 357.
    • Griboval-Constant, A.; Butel, A.; Ordomsky, V. V.; Chernavskii, P. A.; Khodakov, A. Y. Cobalt and Iron Species in Alumina Supported Bimetallic Catalysts for Fischer–Tropsch Reaction. Applied Catalysis A: General 2014, 481, 116–126. https://doi.org/10.1016/j.apcata.2014.04.047.
    • Cheng, K.; Ordomsky, V. V.; Virginie, M.; Legras, B.; Chernavskii, P. A.; Kazak, V. O.; Cordier, C.; Paul, S.; Wang, Y.; Khodakov, A. Y. Support Effects in High Temperature Fischer-Tropsch Synthesis on Iron Catalysts. Applied Catalysis A: General 2014, 488, 66–77. https://doi.org/10.1016/j.apcata.2014.09.033.
    • Bonrath, W.; Medlock, J. 9.3: Parallel Hydrogenation Experiments in the Fine Chemicals Industry. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 341.
    • van Putten, R.-J.; Soetedjo, J. N. M.; Pidko, E. A.; van der Waal, J. C.; Hensen, E. J. M.; de Jong, E.; Heeres, H. J. Dehydration of Different Ketoses and Aldoses to 5-Hydroxymethylfurfural. ChemSusChem 2013, 6 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1681–1687.https://doi.org/10.1002/cssc.201300345.
    • Ras, E.-J.; Louwerse, M. J.; Mittelmeijer-Hazeleger, M. C.; Rothenberg, G. Predicting Adsorption on Metals: Simple yet Effective Descriptors for Surface Catalysis. Phys. Chem. Chem. Phys. 2013, 15 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 4436–4443. https://doi.org/10.1039/c3cp42965b.
    • Ras, E.-J. A Workflow for Process Design–Using Parallel Reactor Equipment Beyond Screening. Catalytic Process Development for Renewable Materials 2013, 119–148.https://doi.org/10.1002/9783527656639.ch5
    • Magendie, G.; Guichard, B.; Chaumonnot, A.; Quoineaud, A. A.; Legens, C.; Espinat, D. Toward a Better Understanding of Residue Hydroconversion Catalysts Using NiMo Catalysts Supported over Silica Grafted Al2O3. Applied Catalysis A: General 2013, 468, 216–229. https://doi.org/10.1016/j.apcata.2013.08.044.
    • Laveille, P.; Biausque, G.; Zhu, H.; Basset, J.-M.; Caps, V. A High-Throughput Study of the Redox Properties of Nb-Ni Oxide Catalysts by Low Temperature CO Oxidation: Implications in Ethane ODH. Catalysis Today 2013, 203, 3–9. https://doi.org/10.1016/j.cattod.2012.05.020.

    2012

    • Ras, E.-J.; Louwerse, M. J.; Rothenberg, G. New Tricks by Very Old Dogs: Predicting the Catalytic Hydrogenation of HMF Derivatives Using Slater-Type Orbitals. Catal. Sci. Technol. 2012, 2 (12), 2456–2464. https://doi.org/10.1039/C2CY20193C.

    2011

    • van der Waal, J. K.; Klaus, G.; Smit, M.; Lok, C. M. High-Throughput Experimentation in Syngas Based Research. Catal. Today 2011, 171 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 207–210. https://doi.org/10.1016/j.cattod.2011.02.019.
    • Van der Waal, J. C.; Van Putten, R.-J.; Ras, E.-J.; Lok, M.; Gruter, G.-J.; Brasz, M.; De Jong, E. The High-Throughput Research Approach to Biorefineries – a Powerful Tool for Studying the Complexity of Catalytic Processes. Cellul. Chem. Technol. 2011, 45 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 461–466.
    • Klaus, G.; Smit, M.; Perez de Santana, A. Hydroprocessing Screening Capabilities Using Avantium’s Parallel Fixed Bed Technology. In Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011; American Chemical Society, 2011; p PETR-92.
    • Imhof, P.; de Santana, A. P. Accelerated Catalytic Processing of Fossil and Biorenewable Feedstocks Using Avantium’s Technology and Methodologies. In AIChE Annu. Meet., Conf. Proc.; American Institute of Chemical Engineers, 2011; pp 279g/1-279g/8.

    2010

    • Ras, E.-J.; McKay, B.; Rothenberg, G. Understanding Catalytic Biomass Conversion Through Data Mining. Top. Catal. 2010, 53 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1202–1208. https://doi.org/10.1007/s11244-010-9563-z.
    • Gluhoi, A. C.; Bakker, J. W.; Nieuwenhuys, B. E. Gold, Still a Surprising Catalyst: Selective Hydrogenation of Acetylene to Ethylene over Au Nanoparticles. Catal. Today 2010, 154 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 13–20. https://doi.org/10.1016/j.cattod.2010.02.021

    2009

    • Ras, E.-J.; Maisuls, S.; Haesakkers, P.; Gruter, G.-J.; Rothenberg, G. Selective Hydrogenation of 5-Ethoxymethylfurfural over Alumina-Supported Heterogeneous Catalysts. Adv. Synth. Catal. 2009, 351 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 3175–3185. https://doi.org/10.1002/adsc.200900526.

    2006

    • Veum, L.; Pereira, S. R. M.; Waal, J. C. van der; Hanefeld, U. Catalytic Hydrogenation of Cyanohydrin Esters as a Novel Approach to N-Acylated β-Amino Alcohols – Reaction Optimisation by a Design of Experiment Approach. European Journal of Organic Chemistry 2006, 2006 (7), 1664–https://doi.org/10.1002/ejoc.200500870.
    • JÄGER, P. Avantium: Accelerate Your R&D! chimica oggi• Chemistry Today 2006, 24 (5), 5.
    • Van der Linden, J. B.; Ras, E.-J.; Hooijschuur, S. M.; Klaus, G. M.; Luchters, N. T.; Dani, P.; Verspui, G.; Smith, A. A.; Damen, E. W. P.; McKay, B.; et al. Asymmetric Catalytic Ketone Hydrogenation: Relating Substrate Structure and Product Enantiomeric Excess Using QSPR. QSAR Comb. Sci. 2005, 24 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 94–98. https://doi.org/10.1002/qsar.200420060.

    2004

    • Simons, C.; Hanefeld, U.; Arends, I. W. C. E.; Sheldon, R. A.; Maschmeyer, T. Noncovalent Anchoring of Asymmetric Hydrogenation Catalysts on a New Mesoporous Aluminosilicate: Application and Solvent Effects. Chemistry – A European Journal 2004, 10 (22), 5829–5835. https://doi.org/10.1002/chem.200400528.
    • Meerendonk, W. J. van; Duchateau, R.; Koning, C. E.; Gruter, G.-J. M. High-Throughput Automated Parallel Evaluation of Zinc-Based Catalysts for the Copolymerization of CHO and CO2 to Polycarbonates. Macromolecular Rapid Communications 2004, 25 (1), 382–386. https://doi.org/10.1002/marc.200300255.
    • Hoogenraad, M.; van der Linden, J. B.; Smith, A. A.; Hughes, B.; Derrick, A. M.; Harris, L. J.; Higginson, P. D.; Pettman, A. J. Accelerated Process Development of Pharmaceuticals: Selective Catalytic Hydrogenations of Nitro Compounds Containing Other Functionalities. Org. Process Res. Dev. 2004, 8 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 469–476. https://doi.org/10.1021/op0341667.

    2003

    • Maxwell, I. E.; van den Brink, P.; Downing, R. S.; Sijpkes, A. H.; Gomez, S.; Maschmeyer, T. High-Throughput Technologies to Enhance Innovation in Catalysis. Top. Catal. 2003, 24 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 125–135. https://doi.org/10.1023/B:TOCA.0000003084.52115.fa.

     

    Flowrence® products specifications

    Reactor Section

    Easy and quick reactor exchange system. Possibility to use quartz reactors at high pressure.

    1 block of 4 reactors

    HT = High Temperature max. 800°C nominal, limited to 925°C (<0.5°C reactor to reactor deviation)

    4 blocks of 4 reactors

    HT  or MT = Medium Temperature max. 525°C (<0.5°C block-to-block deviation)

    16 reactors with iRTC

    individual Reactor Temperature Control
    max. 550°C (<0.5°C reactor-to-reactor)

    4 reactors with iRTC

    individual Reactor Temperature Control
    max. 550°C (<0.5°C reactor-to-reactor)

    Temperature Ranges (°C)

    100 – 800°C
    up 925°C (Option)

    50 – 525°C
    100 – 800°C
    up 925°C (Option)

    50 – 550°C

    50 – 550°C

    Reactor Types

    L= Length
    OD= Outer Diameter
    ID= Inner Diameter
    SS= Stainless Steel (< 550⁰C)
    Qz= Quartz (< 925⁰C)

    L 300 mm 561 mm
    OD 3 mm 6 mm
    ID SS 2 / 2.6 mm 2 / 3 / 4 / 5 mm
    ID Qz 2 mm 2 / 4 mm
    300 mm 561 mm 561 mm
    3 mm 3 mm 6 mm
    2 / 2.6 mm 2 / 2.6 mm 2 / 3 / 4 / 5 mm
    2 mm 2 mm 2 / 4 mm
    561 mm
    3 mm
    2 / 2.6 mm
    2 mm
    561 mm
    3 mm
    2 / 2.6 mm
    2 mm

    Maximum Catalyst Bed Length

    (isothermal zone tolerance ± 1°C)
    Note: isothermal length is dependent on the temperature range

    300 / 3 HT 561 / 6 HT
    >120 mm @ 450°C >200 mm @ 500°C
    >90 mm @ 800°C >150 mm @ 800°C
    >140 mm @ 925°C
    300 / 3 HT 561 / 3 MT 561 / 6 HT
    >120 mm @ 450°C >310 mm @ 450°C >200 mm @ 500°C
    >90 mm @ 800°C >150 mm @ 800°C
    >140 mm @ 925°C
    561 / 3 MT iRTC
    250°C ±0.5°C 41cm (4reactors)
    350°C±0.5°C 38cm (4reactors)
    550°C±0.5°C 28cm (4reactors)
    3 reactors at 550°C, 1 reactor 350°C:
    550°C=27cm 350°C=41cm ±0.5°C
    561 / 3 MT iRTC
    250°C ±0.5°C 41cm (4reactors)
    350°C±0.5°C 38cm (4reactors)
    550°C±0.5°C 28cm (4reactors)
    3 reactors at 550°C, 1 reactor 350°C:
    550°C=27cm 350°C=41cm ±0.5°C

    Catalyst Volume (mL)

    (isothermal zone)

    0.2 - 0.6 mL 0.4 - 2.0 mL
    0.2 - 0.6 mL 0.4 - 1.0 mL 0.4 - 2.0 mL
    0.4 - 1.0 mL
    0.4 - 1.0 mL

    Pressure Ranges (barg)

    2 – 80 barg
    0.5 – 180 barg (option)

    2 – 100 barg
    0.5 – 180 barg

    2 – 80 barg
    0.5 – 180 barg

    2 – 20 barg
    2 – 50 barg (option)

    Reactor Pressure Control

    Advanced control RSD ±0.1 barg at reference conditions (gas phase only and 20 barg). For trickle flow Advanced control RSD ±0.5barg.

    Standard (±0.5 barg)
    Advanced (±0.1 barg) (option)

    Standard (±0.5 barg)
    Advanced (±0.1 barg) (option)

    Advanced (±0.1 barg)

    Advanced (±0.1 barg)

    Gas Feed Lines

    (#Gas Feeds)

    Up to 6 + Diluent gas

    He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

    Up to 7 + Diluent gas

    He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

    Up to 7 + Diluent gas

    He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

    Up to 6 + Diluent gas

    He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

    Online Analysis

    Full integration GC, MS , GC/MS with data visualisation (option)

    Full integration GC, MS , GC/MS with data visualisation

    Full integration GC, MS , GC/MS with data visualisation

    Full integration GC, MS , GC/MS with data visualisation

    Liquid Feed

     Split feeding 8 + 8 reators (option)

    Pump-Coriolis dosing system
    (ambient, cooled)

    Pump-Coriolis dosing system
    (ambient, cooled, heated 80°C)

    Pump-Coriolis dosing system
    (ambient, cooled, heated 80°C)

    Pump-Coriolis dosing system
    (ambient, cooled, heated 80°C)

    Liquid Distribution

    Microfluidic Distribution
    (4-channel glass-chip)

    Microfluidics Distribution
    (4x4-channel glass-chip)
    (16-channel glass-chip)
    Active Liquid Distribution (option)
    (with automatic isolation valves)

    Active Liquid Distribution
    (with automatic isolation valves)

    Microfluidic Distribution
    (4-channel glass-chip)

    Liquid Sampling

    (G/L Separation)

    Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

    Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

    Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

    Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

    Reactors Effluent Handling

    (Off-line Analysis Connection)

    Full heated circuit up to 180°C with sequential on-line full gas phase sampling (option)

    Full heated circuit up to 200°C with sequential on-line full gas phase sampling

    Full heated circuit up to 200°C with sequential on-line full gas phase sampling

    Full heated circuit up to 200°C with sequential on-line full gas phase sampling

    Offline Analysis

    Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode (option)

    Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

    Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

    Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

    Waste Handling

    Ambient temperature
    Heated wax trapping (option)

    Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

    Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

    Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

    Safety

    Gas sensors and control box (CO, LEL, VOC)

    Gas sensors and control box (CO, LEL, VOC)

    Gas sensors and control box (CO, LEL, VOC)

    Gas sensors and control box (CO, LEL, VOC)

    Flowrence® Software

    Flowrence® recipe builder, control & database builder

    Flowrence® recipe builder, control & database builder

    Flowrence® recipe builder, control & database builder

    Flowrence® recipe builder, control & database builder

    Microfluidics modular gas distribution

    Unrivalled accuracy in gas distribution with patented glass-chips for 4 and 16 reactors, with a guaranteed flow distribution of 0.5% RSD. Quick exchange of glass-chips for different operating conditions. Flexibility to cover a wide range of applications.

    TinyPressure glass-chip holder with integrated pressure measurement

    Compact modular design for gas and liquid distribution. No high-temperature pressure sensors required. Quick exchange of the microfluidic glass-chips, without the need for time-consuming leak testing.

    Tube-in-tube reactor technology with effluent dilution

    Unique tube-in-tube design with easy and rapid exchange of the reactor tubes (within minutes!). No need for any connections. Use of inert diluent gas (outside of reactor) to maintain the pressure prevents dead volumes and back flow. Possibility to use quartz reactors at high pressure applications.

    Automated liquid sampling system

    Programmable, fully automated liquid product sampling robot for 24/7 hands-off operation. Robot equipped with a compact manifold aiming at depressurizing the effluent immediately after each reactor to atmospheric pressure. Eliminates the use of high pressure valves.

    Reactor Pressure Control (RPC)

    The most accurate and stable pressure regulator for a 16-parallel reactors with just ±0.1bar RSD. The RPC uses microfluidics technology to regulate the pressure of each reactor, maintaining equal distribution of the inlet flow over the 16 reactors.

    Auto-calibrating liquid feed distribution, measurement, and control

    Distribution of difficult feedstocks e.g., VGO, HVGO, DAO. Liquid distribution 0.2% RSD, making it the most accurate liquid distribution device on the market. Option to selectively isolate each reactor.

    Single-Pellet-String-Reactors (SPSR)

    No dead-zones, no bed packing & distribution effects. The catalyst packing is straightforward and does not require special procedures. A single string of catalyst particles is loaded in the reactors avoiding maldistribution, eliminating channeling and incomplete wetting.

    EasyLoad®

    Unique reactor closing system with no connections. Rapid reactor replacement minimizing delays, improving uptime and reliability. Stable evaporation by liquid injection into reactor.

    Contact us

    We are here to help you

     

     

     

     

     

     

     

     

    Avantium Headquarters

    +31 (0)20 586 8080

    Zekeringstraat 29
    1014 BV Amsterdam
    The Netherlands