Even Faster Analytics!

Matching the Speed of your Chemistry

For chemistry applications where data-density is important to monitor your processes, “normal” Analytics like online-GC can be too slow, requiring other techniques to collect the relevant data. We have validated multiple with the goal of collecting at least 1 datapoint per minute. This is necessary to follow fast chemistries or processes like deNOx, Methanol to Olefins, absorption breakthrough curves or feedback-loop controlled applications for iso-conversion like reforming. The easiest solution is taking online-MS (Mass-Spectroscopy), where a relatively simple mixture can be analyzed very fast, depending on the number of mass fragments that need to be measured, resulting in several datapoints per minute. 

As soon as the sample components have too many similar mass fragments the MS is no longer a suitable technique resulting in a lower accuracy and a lot of calibration work. However, if there are enough structural differences switching to FT-IR (Fourier-Transformation Infra-Red) is a suitable technique which can give very unique spectral absorbance for different bond types. Especially in the gas phase the wavelength bands can be very narrow and components can be identified even in the presence of water. In one of our applications, we have chosen a gas flow cell with a very narrow light path, resulting in a small sample volume needed to be flushed to get a fresh sample which is beneficial to get a real-time measurement of fast-changing concentrations.

The main advantage of the IR spectra is the ability to find a direct relation between concentration and area on a specific wavelength due to Beer’s Law, or create a calculation model with another analytical technique as a secondary input. See below the difference of sharp peaks in a deNOx example (ppm range) versus the broad spectrum changes in a hydrocarbon conversion (percentage range), wherein both cases we got a good correlation to use these as trending values for the applications.

Beer’s Law applied to sharp peaks versus PCR modelling to broad spectra.

Flowrence® products specifications

Reactor Section

Easy and quick reactor exchange system. Possibility to use quartz reactors at high pressure.

1 block of 4 reactors

HT = High Temperature max. 800°C nominal, limited to 925°C (<0.5°C reactor to reactor deviation)

4 blocks of 4 reactors

HT  or MT = Medium Temperature max. 525°C (<0.5°C block-to-block deviation)

16 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

4 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

Temperature Ranges (°C)

100 – 800°C
up 925°C (Option)

50 – 525°C
100 – 800°C
up 925°C (Option)

50 – 550°C

50 – 550°C

Reactor Types

L= Length
OD= Outer Diameter
ID= Inner Diameter
SS= Stainless Steel (< 550⁰C)
Qz= Quartz (< 925⁰C)

L 300 mm 561 mm
OD 3 mm 6 mm
ID SS 2 / 2.6 mm 2 / 3 / 4 / 5 mm
ID Qz 2 mm 2 / 4 mm
300 mm 561 mm 561 mm
3 mm 3 mm 6 mm
2 / 2.6 mm 2 / 2.6 mm 2 / 3 / 4 / 5 mm
2 mm 2 mm 2 / 4 mm
561 mm
3 mm
2 / 2.6 mm
2 mm
561 mm
3 mm
2 / 2.6 mm
2 mm

Maximum Catalyst Bed Length

(isothermal zone tolerance ± 1°C)
Note: isothermal length is dependent on the temperature range

300 / 3 HT 561 / 6 HT
>120 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
300 / 3 HT 561 / 3 MT 561 / 6 HT
>120 mm @ 450°C >310 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C

Catalyst Volume (mL)

(isothermal zone)

0.2 - 0.6 mL 0.4 - 2.0 mL
0.2 - 0.6 mL 0.4 - 1.0 mL 0.4 - 2.0 mL
0.4 - 1.0 mL
0.4 - 1.0 mL

Pressure Ranges (barg)

2 – 80 barg
0.5 – 180 barg (option)

2 – 100 barg
0.5 – 180 barg

2 – 80 barg
0.5 – 180 barg

2 – 20 barg
2 – 50 barg (option)

Reactor Pressure Control

Advanced control RSD ±0.1 barg at reference conditions (gas phase only and 20 barg). For trickle flow Advanced control RSD ±0.5barg.

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Advanced (±0.1 barg)

Advanced (±0.1 barg)

Gas Feed Lines

(#Gas Feeds)

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Online Analysis

Full integration GC, MS , GC/MS with data visualisation (option)

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Liquid Feed

 Split feeding 8 + 8 reators (option)

Pump-Coriolis dosing system
(ambient, cooled)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Liquid Distribution

Microfluidic Distribution
(4-channel glass-chip)

Microfluidics Distribution
(4x4-channel glass-chip)
(16-channel glass-chip)
Active Liquid Distribution (option)
(with automatic isolation valves)

Active Liquid Distribution
(with automatic isolation valves)

Microfluidic Distribution
(4-channel glass-chip)

Liquid Sampling

(G/L Separation)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Reactors Effluent Handling

(Off-line Analysis Connection)

Full heated circuit up to 180°C with sequential on-line full gas phase sampling (option)

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Offline Analysis

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode (option)

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Waste Handling

Ambient temperature
Heated wax trapping (option)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Safety

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Flowrence® Software

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Microfluidics modular gas distribution

Unrivalled accuracy in gas distribution with patented glass-chips for 4 and 16 reactors, with a guaranteed flow distribution of 0.5% RSD. Quick exchange of glass-chips for different operating conditions. Flexibility to cover a wide range of applications.

TinyPressure glass-chip holder with integrated pressure measurement

Compact modular design for gas and liquid distribution. No high-temperature pressure sensors required. Quick exchange of the microfluidic glass-chips, without the need for time-consuming leak testing.

Tube-in-tube reactor technology with effluent dilution

Unique tube-in-tube design with easy and rapid exchange of the reactor tubes (within minutes!). No need for any connections. Use of inert diluent gas (outside of reactor) to maintain the pressure prevents dead volumes and back flow. Possibility to use quartz reactors at high pressure applications.

Automated liquid sampling system

Programmable, fully automated liquid product sampling robot for 24/7 hands-off operation. Robot equipped with a compact manifold aiming at depressurizing the effluent immediately after each reactor to atmospheric pressure. Eliminates the use of high pressure valves.

Reactor Pressure Control (RPC)

The most accurate and stable pressure regulator for a 16-parallel reactors with just ±0.1bar RSD. The RPC uses microfluidics technology to regulate the pressure of each reactor, maintaining equal distribution of the inlet flow over the 16 reactors.

Auto-calibrating liquid feed distribution, measurement, and control

Distribution of difficult feedstocks e.g., VGO, HVGO, DAO. Liquid distribution 0.2% RSD, making it the most accurate liquid distribution device on the market. Option to selectively isolate each reactor.

Single-Pellet-String-Reactors (SPSR)

No dead-zones, no bed packing & distribution effects. The catalyst packing is straightforward and does not require special procedures. A single string of catalyst particles is loaded in the reactors avoiding maldistribution, eliminating channeling and incomplete wetting.

EasyLoad®

Unique reactor closing system with no connections. Rapid reactor replacement minimizing delays, improving uptime and reliability. Stable evaporation by liquid injection into reactor.

Contact us

We are here to help you

 

 

 

 

 

 

 

 

Avantium Headquarters

+31 (0)20 586 8080

Zekeringstraat 29
1014 BV Amsterdam
The Netherlands

Contact us