Avantium successfully evaluates light-naphtha isomerization catalysts for major US refining company

Apr 30, 2018

Avantium successfully performed comprehensive comparative catalyst testing of C5/C6 isomerization catalysts for a major US refining company. The program focused on evaluating the performance of two commercially available chlorinated alumina catalysts across a broad range of different process conditions, including a dedicated complete deactivation run.

Reforming, Isom and Aromatics Technology Director: ” I was very pleased with Avantium’s  catalyst testing results. Avantium‘s technical expertise is excellent, and their communication and  flexibility were superb. It was a pleasure working with everyone at Avantium. I look forward to working with them again in the future.”

Avantium’s EasyLoad® reactor loading technology and tailored workflows allow for a rapid catalyst exchange, avoiding contamination by moisture and oxygen – our unit design intrinsically enables to testing highly sensitive catalysts and chemistries effectively and safely.  The methods applied and the agreed experimental design have been verified and accepted by the client and selected catalyst vendors.  The resulting high data quality (precision, accuracy and reproducibility) enabled the client to make better catalyst decisions for their units and refinery specific conditions and at the same time providing enough data for them to generate performance predictions models.

Steven Olivier, Director Catalysis, says: “The application knowledge of our experts, together with the flexible utilization of the Flowrence® Technology with 16-parallel individual temperature-control reactors allow us to deliver outstanding accuracy in the most cost-effective way for our customers.”

About Avantium Refinery Catalyst Testing
Avantium is an independent R&D company based in Amsterdam, The Netherlands.  Avantium Catalysis helps customers to accelerate their catalyst R&D – offering innovative systems and services to unveil deeper insights into catalyst properties and performance. Avantium’s proven Flowrence parallel fixed bed reactor platform generates extremely accurate and repeatable data and is optimally configured for side-by-side catalyst performance tests, allowing for a direct comparison of the catalyst performance without compromise data quality (repeatability, reproducibility and scalability) with low amounts of feed (less waste generated). Avantium’s Refinery Catalyst Testing program offers refineries the possibility to independently evaluate catalysts options from multiple vendors. Our 16 parallel reactors units enable the side-by-side testing of up to 16 catalysts under the same exact conditions using the refinery provided feedstock. The cost-effective testing programs are purposely designed to provide relevant test results to support the catalyst selection for Hydrocracking, Hydrotreating, Catalytic Reforming & Isomerization processes.  We are committed to provide our customers meaningful results to improve decision-making and ultimately increase their competitiveness & profitability.

Flowrence® products specifications

Reactor Section

Easy and quick reactor exchange system. Possibility to use quartz reactors at high pressure.

1 block of 4 reactors

HT = High Temperature max. 800°C nominal, limited to 925°C (<0.5°C reactor to reactor deviation)

4 blocks of 4 reactors

HT  or MT = Medium Temperature max. 525°C (<0.5°C block-to-block deviation)

16 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

4 reactors with iRTC

individual Reactor Temperature Control
max. 550°C (<0.5°C reactor-to-reactor)

Temperature Ranges (°C)

100 – 800°C
up 925°C (Option)

50 – 525°C
100 – 800°C
up 925°C (Option)

50 – 550°C

50 – 550°C

Reactor Types

L= Length
OD= Outer Diameter
ID= Inner Diameter
SS= Stainless Steel (< 550⁰C)
Qz= Quartz (< 925⁰C)

L 300 mm 561 mm
OD 3 mm 6 mm
ID SS 2 / 2.6 mm 2 / 3 / 4 / 5 mm
ID Qz 2 mm 2 / 4 mm
300 mm 561 mm 561 mm
3 mm 3 mm 6 mm
2 / 2.6 mm 2 / 2.6 mm 2 / 3 / 4 / 5 mm
2 mm 2 mm 2 / 4 mm
561 mm
3 mm
2 / 2.6 mm
2 mm
561 mm
3 mm
2 / 2.6 mm
2 mm

Maximum Catalyst Bed Length

(isothermal zone tolerance ± 1°C)
Note: isothermal length is dependent on the temperature range

300 / 3 HT 561 / 6 HT
>120 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
300 / 3 HT 561 / 3 MT 561 / 6 HT
>120 mm @ 450°C >310 mm @ 450°C >200 mm @ 500°C
>90 mm @ 800°C >150 mm @ 800°C
>140 mm @ 925°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C
561 / 3 MT iRTC
250°C ±0.5°C 41cm (4reactors)
350°C±0.5°C 38cm (4reactors)
550°C±0.5°C 28cm (4reactors)
3 reactors at 550°C, 1 reactor 350°C:
550°C=27cm 350°C=41cm ±0.5°C

Catalyst Volume (mL)

(isothermal zone)

0.2 - 0.6 mL 0.4 - 2.0 mL
0.2 - 0.6 mL 0.4 - 1.0 mL 0.4 - 2.0 mL
0.4 - 1.0 mL
0.4 - 1.0 mL

Pressure Ranges (barg)

2 – 80 barg
0.5 – 180 barg (option)

2 – 100 barg
0.5 – 180 barg

2 – 80 barg
0.5 – 180 barg

2 – 20 barg
2 – 50 barg (option)

Reactor Pressure Control

Advanced control RSD ±0.1 barg at reference conditions (gas phase only and 20 barg). For trickle flow Advanced control RSD ±0.5barg.

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Standard (±0.5 barg)
Advanced (±0.1 barg) (option)

Advanced (±0.1 barg)

Advanced (±0.1 barg)

Gas Feed Lines

(#Gas Feeds)

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 7 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Up to 6 + Diluent gas

He, Ar, N2, H2, CH4, CO2, C2H4, C2H6, O2/Inert (≤5%), CO, Other gases

Online Analysis

Full integration GC, MS , GC/MS with data visualisation (option)

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Full integration GC, MS , GC/MS with data visualisation

Liquid Feed

 Split feeding 8 + 8 reators (option)

Pump-Coriolis dosing system
(ambient, cooled)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Pump-Coriolis dosing system
(ambient, cooled, heated 80°C)

Liquid Distribution

Microfluidic Distribution
(4-channel glass-chip)

Microfluidics Distribution
(4x4-channel glass-chip)
(16-channel glass-chip)
Active Liquid Distribution (option)
(with automatic isolation valves)

Active Liquid Distribution
(with automatic isolation valves)

Microfluidic Distribution
(4-channel glass-chip)

Liquid Sampling

(G/L Separation)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Automated liquid sampling (4 rows x 16 vials x 8ml) with sequential on-line gas phase sampling (option)

Parallel liquid sampling (4 x 20ml vials) with sequential on-line gas phase sampling (option)

Reactors Effluent Handling

(Off-line Analysis Connection)

Full heated circuit up to 180°C with sequential on-line full gas phase sampling (option)

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Full heated circuit up to 200°C with sequential on-line full gas phase sampling

Offline Analysis

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode (option)

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Integrated Workflow: SimDist, total S/N, liquid density, balance, label printer, barcode

Waste Handling

Ambient temperature
Heated wax trapping (option)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Ambient temperature / Cooled containers / Heated compartment (wax trapping, heavies)

Safety

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Gas sensors and control box (CO, LEL, VOC)

Flowrence® Software

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Flowrence® recipe builder, control & database builder

Microfluidics modular gas distribution

Unrivalled accuracy in gas distribution with patented glass-chips for 4 and 16 reactors, with a guaranteed flow distribution of 0.5% RSD. Quick exchange of glass-chips for different operating conditions. Flexibility to cover a wide range of applications.

TinyPressure glass-chip holder with integrated pressure measurement

Compact modular design for gas and liquid distribution. No high-temperature pressure sensors required. Quick exchange of the microfluidic glass-chips, without the need for time-consuming leak testing.

Tube-in-tube reactor technology with effluent dilution

Unique tube-in-tube design with easy and rapid exchange of the reactor tubes (within minutes!). No need for any connections. Use of inert diluent gas (outside of reactor) to maintain the pressure prevents dead volumes and back flow. Possibility to use quartz reactors at high pressure applications.

Automated liquid sampling system

Programmable, fully automated liquid product sampling robot for 24/7 hands-off operation. Robot equipped with a compact manifold aiming at depressurizing the effluent immediately after each reactor to atmospheric pressure. Eliminates the use of high pressure valves.

Reactor Pressure Control (RPC)

The most accurate and stable pressure regulator for a 16-parallel reactors with just ±0.1bar RSD. The RPC uses microfluidics technology to regulate the pressure of each reactor, maintaining equal distribution of the inlet flow over the 16 reactors.

Auto-calibrating liquid feed distribution, measurement, and control

Distribution of difficult feedstocks e.g., VGO, HVGO, DAO. Liquid distribution 0.2% RSD, making it the most accurate liquid distribution device on the market. Option to selectively isolate each reactor.

Single-Pellet-String-Reactors (SPSR)

No dead-zones, no bed packing & distribution effects. The catalyst packing is straightforward and does not require special procedures. A single string of catalyst particles is loaded in the reactors avoiding maldistribution, eliminating channeling and incomplete wetting.

EasyLoad®

Unique reactor closing system with no connections. Rapid reactor replacement minimizing delays, improving uptime and reliability. Stable evaporation by liquid injection into reactor.

Contact us

We are here to help you

 

 

 

 

 

 

 

 

Avantium Headquarters

+31 (0)20 586 8080

Zekeringstraat 29
1014 BV Amsterdam
The Netherlands

Contact us

 
 
Share via
Copy link